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Collective stochastic resonance in shear-induced melting of sliding bilayers
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The far-from-equilibrium dynamics of two crystalline two-dimensional monolayers driven past each other is
studied using Brownian dynamics simulations. While at very high and low driving rates the layers slide past
one another retaining their crystalline order, for intermediate range of drives the system alternates irregularly
between the crystalline and fluidlike phases. A dynamical phase diagram in the space of interlayer coupling and
drive is obtained. A qualitative understanding of this stochastic alternation between the liquidlike and crystal-
line phases is proposed in terms of a reduced model within which it can be understood as a stochastic
resonance for the dynamics of collective order parameter variables. This remarkable example of stochastic
resonance in a spatially extended system should be seen in experiments which we propose in the paper.
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I. INTRODUCTION AND RESULTS

A. Background

The shear flow of a solid is one of the most important a
widely studied@1–4# nonequilibrium phenomena in mater
als science, with relevance to practical problems such as
yielding of materials, solid friction, and even the mechani
properties of the Earth’s crust. Such flow takes place w
solids are subjected to stresses which range from a few
cent of the shear modulus to, in some cases, a value o
order of the shear modulus itself. It is particularly convenie
to study such phenomena using very soft solids, where
desired stress to modulus ratio is easily achieved. Ind
such studies open up new regimes in the physics of dri
systems. A variety of such unconventional, ultrasoft sol
have been studied, including packings of multilamel
vesicles@5#, vortex lattices in type-II superconductors@6#,
and crystalline arrays, electrostatically or sterically sta
lized, of colloidal particles in aqueous suspensions@7#. Ex-
periments on suspensions of interacting colloidal partic
under shear are of particular interest to us here, for the
range of interesting phenomena they reveal, including
shear-induced distortion of the static structure factor in
fluid state, and stick-slip dynamics@8#, hysteresis@9#, and
shear-induced melting@10,11#, in the crystalline state. It is
likely that the properties of sheared crystals, as observe
macroscopic three-dimensional scattering studies or in ti
or frequency-domain mechanical measurements, are the
erage result of many intermittent, spatially inhomogene
internal events. Accordingly, this paper focuses on s
events, at the level of the relative motion of an adjacent p
of layers, since we believe that knowledge of these eve
will greatly aid our understanding of the mechanisms und
lying phenomena such as shear melting. We emphasize a
outset, to avert any confusion on this score, that the phen
ena which our study uncovers, and which we discuss in
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tail below, are quite distinct from the well-known stick-sli
effect in atomically thin fluid films subjected to she
@12–15#.

One popular approach to the study of sheared solids
been to consider an ordered layer~the adsorbate!, dragged
over a fixed, rigid periodic potential~the substrate!, the latter
representing an adjacent layer@16–18#. This description is
clearly limited in its applicability since it rules out deforma
tion of the substrate, although it is a reasonable starting p
for experimental situations in which the overlayer is mu
softer than the substrate. It is natural, and more genera
ask instead what happens when both adsorbate and sub
are dynamical, and organize themselves into various st
tures, depending on interaction strengths, temperature
driving force, and it is in this spirit that our model is formu
lated. The case where both layers are comparably defo
able, in particular, is clearly of relevance to sheared cryst
In all cases, each layer confronts a periodic potential p
duced by the other layer, but both amplitude and phase
this periodic potential are dynamical and change as a re
of interactions, noise, and driving force, giving rise to som
remarkable collective effects, reported briefly earlier@19#
and discussed in detail in this paper.

Although the primary motivation for this paper was th
problem of sheared colloidal crystals, there are two ot
classes of problems to which our study has a natural con
tion. One is the phenomenon of lane formation in count
driven interacting particles@20#, the other is the equilibrium
modulated-liquid to solid transition of interacting particles
an external periodic potential. We will touch upon the re
tion of these problems to our work later in this paper.

B. Summary of models and results

We report two detailed studies in this paper: first,
Brownian dynamics simulations of a many-particle mod
@19#, henceforth referred to as the particle model, and s
ond, a reduced model, introduced to get insight into the
sults of the particle model, consisting of just two degrees
freedom @21#, an order parameter amplitude, and a str
field. The particle model consists of two species of particl
©2003 The American Physical Society02-1
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DAS, ANANTHAKRISHNA, AND RAMASWAMY PHYSICAL REVIEW E 68, 061402 ~2003!
A and B, driven by a forceF, of constant magnitude, in
opposite directions, say, along1x and 2x, respectively
~Fig. 1!. TheVAA andVBB interactions are identical. TheVAB

interaction has the same form but is smaller by a factore.
This factor, in a phenomenological way, incorporates
physics of the third direction~see below!. All pairwise inter-
actions are of screened Coulomb form, with the screen
parameter so chosen that, whenF50, each species in th
absence of the other settles down in a macroscopically
dered triangular lattice configuration. The dynamics of
system is modeled by the overdamped Langevin equation
relatively sheared sets of particles and is monitored for
ferentF ande. With the interlayer coupling strengthe held
constant, on increasing the drive, we observe an interes
sequence of nonequilibrium states, namely, a sliding crys
line ordered state~Fig. 2!, a sliding melt-freeze state~char-
acterized by alternate states of order and disorder in tim!,
followed again by a sliding ordered state. In the intermedi
‘‘melt-freeze’’ regime, for fixed drive, the residence time
the system in the ordered state decreases and that o
disordered state increases as a function ofe ~Figs. 3–5!. The
allowed nonequilibrium states are best understood in te
of a dynamic phase diagram of these states. We present
a dynamical nonequilibrium phase diagram~Fig. 10! demar-
cating the three regimes~i! lower smooth sliding,~ii ! alter-
nating melt-freeze state, and~iii ! upper smooth sliding state
The melt-freeze alternations are most pronounced in a w
dow of driving force F and interlayer couplinge values.
These melt-freeze cycles are strongly reminiscent of the t
series of a system undergoing stochastic resonance@22–25#
and, to explore this aspect in more detail following Ref.@21#,

FIG. 2. Simulation images of macroscopically ordered lattic
drifting through each other fore50.05 andFd* 50.0438.

FIG. 1. Schematic diagram of the model
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we introduce the reduced model. Using the reduced mo
we study the time evolution of the system using coup
time-dependent Ginzburg-Landau equations for the order
rameter and strain fields, as a function of a coupling para
etera entering the model equations and a driveV analogous
to e andF, respectively. For a certain range of values ofa,
keepinga fixed, as a function of the drive parameterV, we
observe three regimes~Figs. 11 and 12!—a crystalline state
~nonzero order parameter value!, a bistable regime where th
system alternates between the crystalline and liquid state~or-
der parameter values being zero!, followed again by a crys-
talline state. KeepingV fixed at an optimum value, we find
that the ratio of the average lifetime of the crystalline state
that of the liquid state in the intermediate regime of bistab
ity decreases asa is increased~Figs. 13 and 14!. These ob-
servations are remarkably similar to the phenomenon
served in the particle model and indeed the phase diagr
of the two models~Figs. 10 and 17! correspond surprisingly
well. Further, the reduced model exhibits a maximum in
signal-to-noise ratio at optimum values of the noise intens
~Fig. 16!, thereby making the connection to stochastic re
nance concrete@22–25#.

The paper is organized as follows. The Brownian dyna
ics simulations of the particle model are described in S
II A and the results discussed in detail in Sec. II B. This
followed by physical arguments in support of the behavi
observed. The reduced model@21# is introduced in Sec. III A
and its results discussed in Sec. III B. Finally, in Sec. IV w
provide a discussion of our results, suggest how our ob

s
FIG. 4. The structure factor height~averaged over the first ring

of maxima! as a function of time in the melt-freeze cycle state f
e50.02 andFd* 50.8167.

FIG. 3. The structure factor height~averaged over the first ring
of maxima! as a function of time in the melt-freeze cycle state f
e50.05 andFd* 50.8167.
2-2
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vations may be verified experimentally, and outline dire
tions of future research.

II. BROWNIAN DYNAMICS SIMULATIONS OF TWO
ADJACENT MONOLAYERS

A. Particle model

We consider two setsA and B of Brownian particles in
two spatial dimensions, driven in the1x and2x directions
respectively by a constant driving force with magnitudeF as
shown in Fig. 1. Pairwise interactions between particles
described by potentialsVAA(r ), VBB(r ), and VAB(r ). We
choose a rectangular box of dimensionsL5(A3/2)320,
and W520,, where ,5(2A3n0)21/2, n0 being the mean
number density of either species. All quantities we use ar
nondimensional form. Lengths are nondimensionalized b,
and time byt[,2/D, D being the Brownian diffusivity. En-
ergy is scaled bykBT and force bykBT/,, whereT is the
temperature andkB the Boltzmann constant. If the two clos
packed planes, with speciesA and B in distinct planes, are
slid past each other, it is highly plausible thatVAB will be
weaker thanVAA andVBB ~since the effect of theinterlayer
interaction on the two-dimensional in-plane motion of t
particles, which is whatVAB encodes, is substantially smalle
than that due to theintralayer interaction! and that the
strength ofVAB relative toVAA and VBB can be varied by
increasing or decreasing the normal confining pressure.
therefore choose for this work dimensionless pair potent
of the screened Coulomb form,

VAA~r !5VBB~r !5e21VAB~r !5~U0 /r !exp~2kr !, ~1!

where U0 (51.753104) and the screening parameter (k,
50.5) are so chosen that each species in the absence o
other and any external driving force settles down in a tri
gular lattice configuration~Fig. 1!. The particle positions
then evolve according to the overdamped Langevin eq
tions,

Rm
i ~ t1dt !5Rm

i ~ t !1dt@Fm
i1fm

i ~Rm~ t !!1hm
i ~ t !#, ~2!

whereRm
i 5(xim ,yim) is the coordinate of thei th particle of

the speciesm (5A or B), and6Fx̂ ~1 for A, 2 for B) is
the external driving force on thei th particle of typem.

FIG. 5. The structure factor height~averaged over first ring o
maxima! as a function of time in the melt-freeze cycle state fore
50.06 andFd* 51.4350.
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i ~Rm

i !52(
j Þ i

“Vm in j~Ri2Rj ! ~3!

are the interparticle forces andhm
( i ) are Gaussian white nois

sources with zero mean obeying the fluctuation dissipa
relation which in nondimensional form reads

^hm
i ~0!hn

j ~ t !&52Idmnd i j d~ t !, ~4!

whereI is the unit tensor. It is trivial to generalize to the ca
where speciesA andB differ but we have chosen them to b
same in this model. We study the time evolution of this s
tem as a function of the drive keepinge constant for severa
values ofe. The dimensionless time step used in our sim
lations isdt56.431026.

B. Simulation results

The results reported in our study are generally
106–107 time steps after the initial transients; 104 steps are
discarded. Over this time, theA andB lattices sweep through
each other a few to several hundred times depending u
the magnitude of the drive. In order to drift under the acti
of the driving forceF, the particles have to overcome a ba
rier of the order ofVAB(,) arising from interaction with the
nearest neighbors of the opposite species. Thus, althougF
is itself dimensionless, it is appropriate to state the result
terms of the physically relevant dimensionless combinat
Fd[F,/VAB(,). However, for the phase diagram in thee-F
variables, we have used the dimensionless combinationFd*
[F,e/VAB(,), asVAB already incorporates a factor ofe in
its definition. The structure and dynamics of the system
been monitored through snapshots of configurations, drift
locities vd , particle-averaged local velocity variance
^(dv)2&, pair correlation functionsgmn(r ) as functions of
separationr , and time-dependent~but equal time! structure
factors Smn(k,t) as functions of wave vectork (m and n
range overA, B). Each point in thegmn(r ) (r5x,y) is an
average over 100 data points, recorded at times separate
50dt. In the absence of the driving force~i.e., atFd50), the
system is an imperfectly ordered crystal. The application o
small nonzeroFd , well below the apparent threshold fo
perceptible macroscopic relative motion of the two lattic
~of A and B particles, respectively!, facilitates particles that
are initially in unfavorable positions to reorganize and mo
to favorable locations leading to a small movement in th
regions. After these transient motions the system set
down into a macroscopically ordered structure with bo
components showing perfect long-range crystalline or
sustained over distances of the order of the system s
There is no further relative drift ofA andB except perhaps a
tiny activated creep which we cannot resolve. Thereaf
keeping interaction strengths and temperature fixed, the d
ing forceF displays three threshold valuesFi , i 51,2,3 cor-
responding to the lower bounds of three states—a lower s
ing crystalline state, a melt-freeze state, and an upper slid
crystalline state. The characteristic features of each of th
three states are mentioned below.
2-3
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WhenFd crosses the first thresholdF1, theA andB com-
ponents acquire a measurable, macroscopic relative drift
locity vd . The drift velocity shows a smooth change at th
threshold value with the velocity fluctuations@26# showing a
pronounced enhancement@19# characteristic of depinning
~See Figs. 3 and 4 of Ref.@19#.! This is likely to be a strong
crossover rather than a true transition. Each particle fac
finite barrier to motion, so that at any nonzero temperatu
particles can cross the barrier individually in an incoher
manner for arbitrarily smallF1. The barrier for creep veloc
ity should thus be finite even in the limit of infinite syste
size. In the regionF1,F,F2, bothA andB components are
well-ordered, drifting crystals~Fig. 2!. The two components
slide smoothly past each other in lanes of width equal to
interparticle distance, with negligible distortion or disord
We comment later on the connection to the lane format
work of Ref. @20#.

In a window of driving forcesF2,F,F3, we observe
intriguing stochastic alternations of the system between

FIG. 6. Particle configuration snapshots at the onset of diso
in the melting-freezing regime fore50.05 andFd* 50.8167.

FIG. 7. Voronoi construction from particle configurations sho
ing the onset of order and of disorder for speciesA at e50.05 and
Fd* 50.8167.
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ordered and a disordered state which are the melt-fre
cycles ~Figs. 4, 3, and 5!. We have used snapshots of co
figurations shown in Figs. 6 and 7, the pair correlation fun
tion gmn(r ), r5x,y ~Figs. 8 and 9!, and the equal-time bu
time-dependent structure factorS(k,t) to characterize these
dynamical states of order and disorder. As the first two me
ods are representative of the instantaneous state of the
tem, for monitoring these cycles continuously we use
peak height of the~short-time averaged! static structure fac-
tor S(k,t). Indeed, the essential features of these cyc
namely the persistence duration, fluctuations in the exten
order, etc, are best captured through the time dependenc
S(k,t) as we shall see. A typical such plot is shown in Fig
for an optimum value ofe50.05. It is clear thatS(k,t)
alternates between long stretches of crystal-like@correspond-
ing to large values ofS(k,t)] andcomparablylong stretches
of liquidlike values@small values ofS(k,t)] as the simula-
tion progresses. This is strikingly different from stick-sl
alternations, in which the melted~slip! state is considerably
shorter than the crystalline~stick! state@12,13#. We discuss
this comparison later in Sec. IV. For smaller values ofe,
even as the persistence of the crystalline state is enhan
the extent of ordering itself is less pronounced as indica
by the lower values ofS ~compared to that for the crystallin
phase corresponding toe50.05). Concomitantly, the liquid-
like state also displays significant short-range order. Th

er

FIG. 8. The distribution function alongx direction for speciesA
for e50.05 andFd* 50.8167.

FIG. 9. The distribution function alongy direction for speciesA
for e50.05 andFd* 50.8167.
2-4
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COLLECTIVE STOCHASTIC RESONANCE IN SHEAR- . . . PHYSICAL REVIEW E 68, 061402 ~2003!
features are clear from Fig. 4 whereS(k,t) is shown fore
50.02. For higher values ofe, the liquidlike state is more
favored~as can be seen from the short stretches of crysta
order! for e50.06 shown in Fig. 5.

As is clear from Figs. 3–5, the time scales over which
crystalline order or liquidlike disorder sets in is considera
shorter than the persistence time of each of these phases
process of ordering and disordering is better monito
through a sequence of snapshots of configurations. A typ
set of snapshots is shown in Fig. 6. The correspond
Voronoi construction fore50.05 is shown in Fig. 7.~See
also Fig. 5 in Ref.@19#.! The extent of order in thex andy
directions is studied using the correlation function. The
ture of g(x) and g(y) is shown in Figs. 8 and 9 at fou
different times. Note that the extent of order in the liquidli
state in the direction of the drivex is significantly less than
that in they direction. Further, the primary ordering wav
vectors are alongx̂ and 60° to x̂. Thus nearest neighbo
distance in they direction isA3 times larger. A partial un-
derstanding of why order starts to set in again after melt
has occurred is to note that relative motion disrupts prima
those structures with ordering wave vector along the d
direction x̂, leaving some residual order alongŷ as seen in
Figs. 8 and 9. So each species still provides a weak peri
potential alongy for the other species. This can induce ord
alongx as well resulting in a two-dimensional~2D! ordered
state by a mechanism similar to the ‘‘laser-induced freezin
of a 2D suspension of strongly interacting colloidal partic
subject to a 1D periodic modulation@27–30#. This state per-
sists for a long time, before disorder once again sets in. A
it is in this driving force regime that one sees the meltin
freezing cycles. Finally, we find that the two species do
necessarily order or disorder simultaneously. Though
found no clear trend in this regard, mostly, one species
gins to order while the other is disordered. Also, for bo
species, the ‘‘Bragg peak heights’’ rise fast and decl
slowly, i.e., ordering takes place much faster than the p
gression of disorder.

The structure factor can be used to obtain the dynam
phase diagram in theFd* -e plane. This is shown in Fig. 10
The points shown here actually represent the value
(Fd* ,e) for which the crystalline phase is detected just b
fore entering the bistable melt-freeze region~region II!. The
regions I and III refer, respectively, to the lower and upp
sliding crystalline states. We emphasize here that the tra
tion to the melt-freeze regime occurs over a finite range
values of the parameters and it is not possible to pin do
with precision the point at which the melt-freeze alternatio
begin. The range of values of the force,F32F2, over which
we observe that the melt-freeze cycles increase withe and
hence withVAB as well ~Fig. 10!. This agrees well with our
observation that the average potential barrier that a par
has to negotiate during its motion in the steady sliding s
increases withe. Further, for large values ofe (e>0.05),
the alternations persist over a very large window of drivi
forces. For suche values, we have not been able to detect
upper thresholdF3 corresponding to the reentrant crystallin
state.
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We shall now discuss the melt-freeze cycles in more de
and explain the observed features. There is a curious m
stability associated with the cycles: for the parameters m
tioned above, a disordered configuration fails to nucle
even over our longest simulations if the initial state is chos
to be aperfectly ordered lattice. Thus, both the melt-freeze
cycles and ordered sliding states display local dynamical
bility. But if we disturb this initial perfectly ordered lattice
by moving a single particle by, say, one lattice spacing,
melt-freeze cycles resume. Also note that the orientation
the triangular lattice in the ordered state of the cycles@Fig.
6~a!# is changed by 30° with respect to the one in the ste
sliding state~Fig. 2!. This exchange of stabilities between th
fcc-like ~Fig. 2! and ‘‘layer’’ @Fig. 6~a!# structures is known
from experiments@31# and simulations@32#. At low relative
velocity, particles in each layer have ample time to get ou
the way of those in the other layer while retaining on avera
the fcc-like structure. As the speed is increased, the st
tures do not have sufficient time to relax and overlap is
duced by going to the layer structure of Fig. 6~a!. However,
we observe that even with such a shift in orientation, in
ordered part of the cycle, the smooth relative motion of thA
and B lattices is disturbed now and then by kinks; a ro
moving out of step with adjacent rows, as marked in Fig.
This leads to the formation of kinklike undulations tran
verse to the mean drift like a wave. At some point in time
these undulations build up sufficiently, the system enter
disordered state. This state persists for a long time, be
order sets in once again. Recall that at smalle, in the ordered
part of the cycle, the magnitude of the structure factor
small and correspondingly we find an enhanced level of fl
tuations~Fig. 4! compared to that at largee ~Fig. 3!. This is
because the ordered states at smalle can support a large
number of defects without making a transition to the dis
dered state, whereas ase is increased such states cannot
sustained for long time. In fact, with increasinge, the prob-
ability of the system being in the ordered state crucially d
pends on the defect density, i.e., the ordered state is
lived only when the number of defects is small. This can

FIG. 10. The phase diagram of the system~100 particles of each
species! in the e-Fd* plane, whereFd* 5F,e/VAB . The system un-
dergoes the stochastic melt-freeze alternations in the region II,
is a macroscopically ordered crystal in the upper and lower reg
I and III, respectively.
2-5
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understood by considering the potential landscape see
each species. In the ordered state, particles of each sp
are nested in the threefold minima formed by its near
neighbors of the other species. For smalle, both in the lower
and upper part of the sliding states, the potential depth
shallow and creation of defects in shallow potentials does
cost much energy. For the same reason, the number of
defects that the state can sustain can also be large, whic
turn implies that the extent of order in the crystalline part
the cycles is not significant. A shallow potential also allo
for the ease of annealing of the defects as this can be acc
plished by removing one particle from a seven-fold coor
nated or adding one particle to a five-fold coordinated s
~Fig. 7!. Thus, lowe situation allows for the ease of creatio
and annealing out of these defects as time progresses.
dynamical balance between the creations and annihilatio
the defects can be sustained for long stretches of time
with smaller extent of order with concomitantly large flu
tuations. This is precisely what is seen in Fig. 4.~Note that
this picture is also consistent with the observed feature
the liquidlike state at lowe has a fairly high level of order
compared to that at highe.! In contrast, with increase ine,
the well depth increases significantly which implies that
crystalline order would be high as can be seen in Fig
Moreover, the formation of defects is less favored, but, o
formed, it cannot be easily annealed. Further, each de
gives rise to large local restoring forces and the crystal
order will be terminated even when their number is smal

For F.F3, both A and B components are once aga
well-ordered, drifting crystals. In fact, the reappearance o
smooth sliding state is akin to the reentrant ordered s
seen in Refs.@21,33#.

In fact, the sliding crystalline states that we observe
low and high drives can be visualized as ordered states
lanes@20# of single-particle width. Reference@20# studies a
model very similar to ours, withe51. In that case, the equi
librium state is a crystal, randomly occupied by each spec
and the driven state shows the interesting phenomeno
lane formation. Becausee is large, the system tries to min
mize the extent ofAB interface, hence one gets a few bro
lanes with many columns of particles of the same spec
Sincee is very small for us, we get many lanes of unit widt

The results stated above are for 100 particles of each
cies. We have carried out a systematic study of this phen
ena for 144, 169, and 256 particles of each type fore
50.02. We find the same qualitative behavior as that for 1
particles including the range ofFd values for the three
phases. However, for smaller systems~with 64 particles of
each species!, we have not observed any significant decay
order fore,0.1 ~possibly due to the fact that the correlatio
length is of the order of half the system size in this case!.

We now discuss some natural timescales which will
useful in our final explanation of this phenomenon. When
two arrays of particles are driven through each other, ther
a competition between two time scales—t1, the time to
traverse one lattice spacing andt2, the time scale of relax-
ation of a particle in the local potential well provided by i
neighbors. Fort1@t2, each species has ample time to rel
to local equilibrium, while fort1!t2, each species average
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out the undulating landscape. For botht1 /t2@1 and !1,
we expect and find smooth, orderly sliding. We therefo
expect maximal effects of interspecies interaction wheret1

't2 ~for example, for e50.05, t1.0.000 22 and t2

.0.000 19 in the melt-freeze regime@19#!, which is what we
find. This suggests that a detailed explanation lies in mec
nisms involving competing time scales to which we no
turn.

The stochastic alternations of the system between
crystalline and liquidlike states is strongly reminiscent of t
phenomenon of stochastic resonance~SR! @22–25#. To see
the similarities and the differences, consider a prototypi
example of stochastic resonance of a Brownian particle
bistable potential subjected to a weak periodic forcing te
When half the periodicity of the driving force is comparab
to the mean first passage time associated with the ba
crossing, the state of the system switches between the
minima of the potential in a surprisingly regular way. Indee
the time series of the position of the Brownian particle e
trained in the two minima is very similar toS(k,t) of the
particle model. What this potential~or an ‘‘effective free en-
ergy’’ in this case! is and what modulations are, is not cle
in the present model and needs further investigation. One
anticipate that the role of the bistable potential in SR
played by the effective free energy as the system is a ma
particle system switching between the crystalline and liqu
like states. However, identifying a periodic forcing in th
present context is more difficult. Thus, it would be useful
construct a reduced model which displays the dominant
tures of the particle model. One important characteristic f
ture of SR is that the signal-to-noise ratio exhibits a ma
mum at an optimum value of the noise intensity. This asp
cannot be easily checked in the particle model as it invol
generating very long time series~which would involve pro-
hibitively large scale computing!. However, we recall that
alteringe in the particle model has an effect that controls t
ratio of the residence times of the system in the ordered
disordered states. This is similar to altering the height of
bistable potential which in turn controls the residence time
the example considered. This identification further suppo
our view that the melt-freeze cycles are, in fact, stocha
resonance. We shall make this more concrete by introduc
a reduced model which captures most features of the par
model.

III. THE REDUCED MODEL

The effects of external nonequilibrium driving condition
in an underlying first-order phase transition have often b
studied successfully by modifying, say, the time-depend
Ginzburg-Landau~TDGL! equation for the dynamics of th
order parameter@34#. The results of the preceding sectio
were obtained from direct simulation of particle motion.
this section, we propose an understanding of these res
through dynamical equations for the appropriate order
rameter fields evolving under the combined effect of sh
and a coarse-grained free energy. The nature of the free
ergy functional is usually determined based on the kno
edge of the allowed states of order/disorder and a
2-6



d
ls
d

t
e
os

lin
r.
lin
r

cl
nt
ity

lo
us
th

b
e

e

r

e

-
re-

n-
al

ped

re-

t
a,

se

by

e
ear
ted

d
in

tion
r the

an
e
m.

de-
ese
y
ig-

an-

m-
e
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general symmetry considerations. Here, we follow the mo
proposed earlier@21# for studying sheared colloidal crysta
@33,35#. Recall that in our simulations, at low drives, we fin
a smooth sliding crystal wherein theA lattice slides past tha
of B in a coherent fashion, and at intermediate drive valu
we observe the melt-freeze cycles. To mimic this, we cho
an order parameter denoted byr ~the Bragg peak intensity!,
which takes on a finite value corresponding to the crystal
order and zero value corresponding to the liquidlike orde
simple form of the free energy which ensures the crystal
(rÞ0) and melt phases (r50) is the Landau polynomial fo
a first-order transition,

V~r!5
a1r2

2
2

b1r3

3
1

c1r4

4
. ~5!

The distortions produced due to the drive in the parti
model can be represented by another variable represe
the strain~in our model, the relative phase of the dens
wave in the two sliding layers! denoted byu. In the crystal-
line state, as distortions are small and homogeneous at
drives, we takeu to be zero for this state. As homogeneo
distortions would mean that the successive minima of
crystal are equivalent, we consideru to be a periodic variable
with u50 to be equivalent tou51. Further recall that our
simulations show that at intermediate drives, deformation
comes inhomogeneous, forcing the crystalline state to m
~although in a dynamical way!. Again, a simple form of the
free energy inu should incorporate elasticity at smallu and
yielding at largeu, ie., at small strains,V(u) is assumed to
be quadratic inu and a softening term at larger strains~the
cubic term!. The coefficient ofV(u) must vanish withr, say
asr2, as the free energy cost of deformations must reduc
zero when the system is in the liquid state~i.e., for r50).
The simplest general form of the free energyF(r,u) of a
distorted solid respecting the above conditions@21# is of the
following form:

F~r,u!5V~r!1
1

2
ar2V~u!, ~6!

whereV(u) has a similar form asV(r),

V~u!5
a2u2

2
2

b2u3

3
1

c2u4

4
. ~7!

The Langevin-TDGL equations forr andu that describe the
dynamics of this system are

ṙ52
1

Gr

]F~r,u!

]r
1hr , ~8!

u̇52
1

Gu

]F~r,u!

]u
1V1hu . ~9!

The idea is that in the absence of any restoring forces fou,
u̇ would be equal toV. In general, then,V represents the
effects of relative sliding of the layers, at a rate determin
by competition betweenV and]F/]u. If V is too small,u
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will get stuck at a finite value in the absence of noise.Gq
21’s

(q5r,u) are the kinetic coefficients,hq’s represent Gauss
ian d-correlated noise components whose variances are
lated to Gq and temperature through the fluctuatio
dissipation relation. We ignore possible addition
nonequilibrium noise sources.

The equations for our system are those for an overdam
particle in a nonsymmetric double-well potentialF(r,u),
driven along the angular coordinate@36#. For zero strain (u
50), the system relaxes in either of the two minima cor
sponding to the liquid minimum,

r l50, u50, ~10!

or the crystalline minimum

rc5
b1

2c1
F11A12

4a1c1

b1
2 G , u50, ~11!

depending on which is the locally stable state.
We choose the parameter values (a1 , b1, and c1) such

that the crystalline minimumrc is the more favorable state a
zero drive and the potential barrier between the two minim
V(r l)2V(rc), is appropriate. In the presence of noi
~whose strength can be appropriately chosen! the system
equilibrates with the respective populations determined
noise strength and the relative well depths. Ifu and r are
macroscopic~infinite system-size! averages, there should b
no noise in the equations. In practice, presumably, sh
melting and the cycles take place over a finite correla
domain~whose size we do not know!. We are therefore jus-
tified in using noisy evolution equations.

When the driveV is switched on, this scenario is altere
and the populations of each of these wells now evolve
time depending upon the competing time scales of relaxa
and applied shear rate. In this case, it is better to conside
fixed points of the noise-free case of Eqs.~8! and ~9!. The
two attractive fixed points to which the system relaxes c
now be identified with crystalline and liquidlike order. Th
repulsive fixed point determines a saddle type of maximu
These will depend on the shear rateV. The barrier height
between the stable fixed points and unstable fixed point
termine the barriers that the system has to surmount. Th
now depend onV. We find that the value of the free energ
at the liquidlike minima and the saddle do not change s
nificantly, only the crystalline~distorted! minimum changes
as a function ofV given by

rc5
b1

2c1
F11A12

4@a11aV~umin!#c1

b1
2 G . ~12!

Note that Eq.~9! determines a critical value ofV5Vc
50.5ar2(]V/]u)umax. For values ofV,Vc , the barrier is
high. In such a situation, in the presence of noise, the tr
sitions would be rare. But, on increasingV beyond the criti-
cal value the ‘‘free energy’’ of crystalline state becomes co
parable with that of the liquid minimum. Under thes
2-7



cu

s

s
i

e

st
tu

fo
a

lu

th
th

on
e

ut
ts

e
e

un
w

to
e

f

-

-
ne

uid
re-

d-
m-
se

stic
par-

.
e

e

we
ds
en-
d

a-

er
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conditions, noise assisted transitions to the liquid state oc
More importantly, in this regime, asu is itself changing as a
function of time, the minima in (r,u) are slowly modulated
under action of the driveV and the relative stability change
as a function of time. When the time scale imposed byV is
small enough to allow the system to make interwell tran
tions and when the time scale of the induced periodicity
approximately equal to the Kramers escape time@37,38# un-
der the influence of noise, one expects transitions betw
the crystalline and liquidlike states in a range of values ofV
beyondVc . As a result, the system can undergo stocha
transitions between the two metastable states which in
can lead to comparable lifetimes.

As this is a driven system, a reasonable criterion
studying the occupancy of the system is to calculate the m
ginal probability distribution functionP(r)5*P(r,u)du
~i.e., the probability of the order parameter having the va
r, independent of the value of the strain fieldu). In the
following section we show that the external drive causes
system to sample both minima or stay mainly in one of
minima depending on the value of the driveV, noise
strength, and coupling constanta starting from an initial
crystalline state.

Results of the reduced model

We study the time series and the probability distributi
of the system by discretizing the Langevin equations in tim
The integration scheme used is the fourth-order Runge-K
with a fixed time step of 0.001. After discarding transien
(;105 time steps! the time evolution of the system for th
next 83109 time steps is monitored. In Figs. 11 and 13 w
have shown a time series stretch from 63109 to 6.53109

time steps. Noise corresponding tor andu are drawn from
Gaussian white noise distributions with zero mean and
variance. For studying the time evolution of the system,
have chosen a noise strengthD5731024 for both hr and
hu . ~We shall study the influence of noise on the signal-
noise ratio later.! For the numerical work reported here, th

FIG. 11. The time series of the order parameter in the low~top
panel!, high ~bottom panel!, and intermediate~middle panel! driv-
ing force regimes. We have chosen a noise strengthD5731024

and coupling parametera50.17.
06140
r.

i-
s

en

ic
rn

r
r-

e

e
e

.
ta

it
e

-

parameter values in the free energy used area150.85, b1
55.8, c158.0, and for the strain field area251.3644, b2
58.7105, andc2513.6740. We study the time evolution o
the system as a function of the driveV ~for a fixed coupling
parametera) and as a function ofa for a fixed drive. We
observe the following behavior.

1. As a function of the driveV

Keeping a fixed at an optimum value (a50.17), the
drive has two thresholds:

~i! For V,V1 and V.V2, we find that the system al
ways resides in the crystalline minimum (rÞ0). The time
series ofr(t) is shown in Figs. 11~a,c! for a typical set of
valuesV50.03 andV50.3, respectively. The correspond
ing probability distribution is peaked around the crystalli
minimum, as can be seen from Figs. 12~a,c!.

~ii ! In an intermediate window of driving forcesV1,V
,V2, the system stochastically alternates between the liq
(r50) and the crystalline minimum. The time series cor
sponding to a typical value ofV50.08 is shown in Fig.
11~b!. The probability distribution has two peaks correspon
ing to these two minima. The time series of the order para
eter@Fig. 11~b!# also shows that the persistence time of the
two states are comparable~for optimum values ofa) very
much like the time series of a system undergoing stocha
resonance. These results are similar to the results of the
ticle model whereFd* was varied for a fixed value ofe.

2. As a function of the couplinga

Here, we have kept the driveV at intermediate values
We find that the crystalline minimum is favored over th
liquid one for low values ofa, whereas for high values th
liquid minimum dominates. At intermediate values ofa, the
system spends comparable durations in each state. As
increasea from small values, one finds that the system ten
to spend increasingly more time in the liquid state and, ev
tually, at large values ofa the liquid state is the preferre

FIG. 12. The marginal probability distribution of the order p
rameter in the low~top panel!, high ~bottom panel!, and intermedi-
ate ~middle panel! driving force regimes for the same paramet
values as in Fig. 11.
2-8
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COLLECTIVE STOCHASTIC RESONANCE IN SHEAR- . . . PHYSICAL REVIEW E 68, 061402 ~2003!
state. This is shown in Fig. 13 for three typical values ofa.
~The numerical results are forV50.08, for which we ob-
serve the most prominent stochastic switching of the or
parameter values betweenrÞ0 andr50.! This is also re-
flected in the probability distribution which has a more pr
nounced peak at the crystalline minimum at smalla and at
the liquid minimum at largea. For intermediate values ofa
we find a bimodal distribution. Figure 14 shows the probab
ity distributions for the parameter values of Fig. 13. Th
behavior is similar to the results obtained in the parti
model by varyinge keepingFd* fixed.

As mentioned, one dominant feature of SR is the enhan
ment of the signal-to-noise ratio~SNR! at an optimum value
of the noise intensity. In order to check this, we have carr
out long runs of the order of 1010 time steps. The powe
spectral density~PSD! of the time series has been calculat
for various values of the noise intensity ranging fromD56

FIG. 13. The time series of the order parameter in the low~top
panel!, high ~bottom panel!, and intermediate~middle panel! values
of the coupling parametera for noise strengthD5731024 and
driving forceV50.08.

FIG. 14. The marginal probability distribution of the order p
rameter in the low~top panel!, high ~bottom panel!, and intermedi-
ate ~middle panel! a, for the same parameter values as in Fig. 1
06140
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31024 to 1.231023. It exhibits strong peaks at all integra
values of the fundamental~unlike the symmetric bistable po
tential where only the odd harmonics are seen! due to the
absence of any symmetry inF(r,u). A plot of this is shown
in Fig. 15 for a typical value ofD57.031024. The signal-
to-noise ratio calculated from the power spectrum using
first peak for various values ofD is shown in Fig. 16.~Here
we have used the conventional definition of SNR, name
10 log@Ssignal(v)/Snoise(v)#.! As is clear from the figure, the
maximum enhancement of the SNR is found to be arou
D;7.031024.

As discussed above, we note thatV anda of the reduced
model take the roles of the driveFd* and the interspecies
interaction strengthe in the particle model, respectively. T
make the parallel between these models more concrete
have constructed the dynamical phase diagram in thea-V
plane shown in Fig. 17.~In constructing this diagram, we
have taken the system to be a liquid state if it spends
than 2% of the time in the crystalline minimum, and corr
spondingly for the crystal.! Region I refers to the crystalline
phase and region III, the reentrant crystalline phase.
melt-freeze cycles where the system alternates between
tal and liquid is shown as region II. In region II, for low
values of the coupling parametera, the persistence of the
ordered state is more than that for the disordered state,

.

FIG. 15. The power spectrum of the time series of the or
parameterr for a50.17,V50.08, andD57.031024.

FIG. 16. The signal-to-noise ratio for the reduced model
parameter valuesa50.17 andV50.08.
2-9
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DAS, ANANTHAKRISHNA, AND RAMASWAMY PHYSICAL REVIEW E 68, 061402 ~2003!
decreases asa is increased, eventually giving way to th
liquidlike region IV for moderate values ofV. It is clear that
this diagram is remarkably similar to the phase diagram
the particle model shown in Fig. 10, except for the region
which could not be detected in the particle model within t
longest runs carried out.

The physical picture of the reduced model is clear. As
initial state at zero shear rate is a crystalline state, by co
nuity arguments one should expect that at low shear rates
system should find the crystalline minimum favorable.
intermediate range of shear rates, the system develops
other minimum at zero value of the order parameterr cor-
responding to the melt state making the system bista
When the shear rate is close to~and larger than! the critical
valueVc , under the action of noise, the systems make tr
sitions from the crystalline minimum to the liquid minimum
and vice versa. However, since the strainu evolves in time,
the system experiences an additional periodic modulat
We note here that this periodicity is not equal to 1/V as the
strain variable moves on theV(u) surface. Typical values o
the induced periodicity estimated from deterministic vers
of Eqs.~8! and ~9! for the optimum range of drive values
of the order of 105 time units. When the induced periodicit
is twice the Kramers escape rate@37#, the system alternate
between the two minima. Further, we note that as the
wells are not symmetric, in the presence of noise, the m
first passage times associated with the two wells will be
ferent. Indeed, we find that as a function ofV, there is a
range ofV values (0.065,V,0.12) where the barrier be
tween the crystalline minimum and maximum of the fr
energy,Fsaddle2Fcrystal5DFc , is much smaller than tha
between the liquidlike minimum and the maximum,Fsaddle
2Fliquid5DFl . A plot of DFc andDFl is shown in Fig. 18.
It is clear thatDFl is nearly constant as a function ofV
while DFc goes through a minimum in the range ofV
50.065–0.12. A simple order of magnitude calculation giv
the Kramers rate@37# Tf

215@(Fmin9 uFsaddle9 u)1/2/2p#exp
2@DF/D#;1025 which matches with the frequency range
the first harmonic seen in the PSD~see Fig. 15!. We note

FIG. 17. The phase diagram of the reduced model in thea-V
plane. The system is crystalline in region I and region III represe
the reentrant solid. In region II we observe the melt-freeze cyc
For high values, liquidlike region IV is seen again.
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here that the first passage time for the system to cross
barrier, from the liquid state is much too large as the bar
DFl;0.01. Thus, it is clear that the reduced model rep
duces, qualitatively, most features of the particle model. T
time series ofS(k,t) in the particle model is very similar to
that of r(t) which we have demonstrated to have all t
features of stochastic resonance. The regime showing
chastic resonance is more pronounced for optimum value
V anda. In fact here, as in our particle model simulation
in the melt-freeze regime, for low values of the couplin
parameter, the crystalline state is favored and for high val
of the coupling parameter, the liquid state is favored, wh
in an intermediate regime they are roughly equal. The si
larity of the reduced model with the particle model is we
summarized by the phase diagram of the model in theV-a
plane which is similar to that of the particle model in th
Fd* -e plane.

IV. DISCUSSION

In summary, we have studied the nonequilibrium statis
cal behavior of two adjacent monolayers sheared past e
other, using Brownian dynamics simulations. For low a
high driving forces, we obtain macroscopically ordere
steadily drifting states. In a suitable range of driving rates
see that the system switches between crystalline and liq
like states. The residence times are nearly equal in an in
mediate range of values of the inter-layer coupling. As
have seen, the interlayer coupling essentially determines
barrier each particle has to surmount in order keep pace
the applied drive. Our simulations show that the switchi
between the crystalline and liquidlike states maintains
spatial coherence~or the lack of it in the liquid state! and
thus is an example ofcooperative stochastic resonance. Al-
though there is no external imposed time-periodic poten
present in our system, its role is played by the drive wh
shears the two layers past each other. Thus, each mo
layer provides a time-varying potential. To make the conn
tion to SR, more concrete, we have introduced a redu
model for the dynamics of amplitude and phase of the cr
talline order parameter@21# which mimics all features of the

ts
s.

FIG. 18. DFc andDFl as a function ofV.
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COLLECTIVE STOCHASTIC RESONANCE IN SHEAR- . . . PHYSICAL REVIEW E 68, 061402 ~2003!
particle model apart from showing the main feature of S
namely, the enhancement of signal-to-noise ratio for o
mum values of noise strength. This relation between the
ticle model and the reduced model makes a convincing c
that the melt-freeze cycles observed in the former are ind
a manifestation of stochastic resonance of a spatially
tended@39# noisy interacting system subjected to a const
drive.

A few comments may be in order on the dynamics of
particle model. Although our model falls broadly into th
class of shear driven systems which are known to disp
stick-slip behavior@12,13,40# in most such cases where th
system spends considerable time in the stuck phase and
little time in the slip phase. Experiments on confined flu
of few monolayers~a situation superficially similar to ou
model! and the corresponding molecular dynamics simu
tions @12,13# show that the system also displays melt-free
cycles with the crystalline phase persisting significan
much longer than the melt phase. From this point of vie
the persistence dynamics we observe, with nearly equal
dence times in crystalline and the liquid-like states, come
a surprise and is clearly not conventional stick-slip motio
The reduced model has helped us to elucidate the conne
to stochastic resonance apart from the similarity of the ph
diagrams of the two models. However, it is clear that not
aspects of the particle model are mimicked by the redu
model. For instance, the feature observed for small interla
couplinge, namely the smaller extent of order as seen by
small values ofS(k,t) in the crystalline state~compared to
larger values ofe) and larger fluctuations is not seen in th
,
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reduced model. As explained earlier, this feature is a ma
body effect appearing in a low barrier situation and theref
cannot be explained on the basis of the SR features of
reduced model valid only in the Kramers high barrier lim
~even if one were to include appropriate spatial degrees
freedom!.

Finally, let us comment on the experiments which c
verify our simulations. We expect that this phenomen
should arise in adjacent crystal planes of sheared collo
crystals. To study this effect in bulk sheared colloidal cry
tals would require not conventional scattering probes
something that focuses on an adjacent pair of crystal pla
@41#. Alternately, we could look at two solid surfaces pa
terned with ordered copolymer@42,43# or colloidal monolay-
ers under relative shear. The colloids or copolymer adsor
to the two surfaces must be of two different kinds, ea
having more affinity towards one of the surfaces. Anoth
possibility would be to study electrokinetic motion o
charged 2D confined binary colloids in the presence o
constant external electric field, generalizing the ideas of R
@20#. Center of mass measurements would be the sam
those made for two species being driven in opposite dir
tions.
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