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Collective stochastic resonance in shear-induced melting of sliding bilayers
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The far-from-equilibrium dynamics of two crystalline two-dimensional monolayers driven past each other is
studied using Brownian dynamics simulations. While at very high and low driving rates the layers slide past
one another retaining their crystalline order, for intermediate range of drives the system alternates irregularly
between the crystalline and fluidlike phases. A dynamical phase diagram in the space of interlayer coupling and
drive is obtained. A qualitative understanding of this stochastic alternation between the liquidlike and crystal-
line phases is proposed in terms of a reduced model within which it can be understood as a stochastic
resonance for the dynamics of collective order parameter variables. This remarkable example of stochastic
resonance in a spatially extended system should be seen in experiments which we propose in the paper.
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I. INTRODUCTION AND RESULTS tail below, are quite distinct from the well-known stick-slip
A. Background Ea{f;ctlén atomically thin fluid films subjected to shear

~The shear flow of a solid is one of the most importantand  One popular approach to the study of sheared solids has
widely studied[1-4] nonequilibrium phenomena in materi- peen to consider an ordered layne adsorbate dragged
als science, with relevance to practical problems such as thgyer a fixed, rigid periodic potentiéthe substrate the latter
yielding of materials, solid friction, and even the mechanicalrepresenting an adjacent layr6—18. This description is
properties of the Earth's crust. Such flow takes place wheRjearly limited in its applicability since it rules out deforma-
solids are subjected to stresses which range from a few pefion of the substrate, although it is a reasonable starting point
cent of the shear modulus to, in some cases, a value of thgr experimental situations in which the overlayer is much
order of the shear modulus itself. Itis particularly convenientspfier than the substrate. It is natural, and more general, to
to study such phenomena using very soft solids, where thgsy instead what happens when both adsorbate and substrate
desired stress to modulus ratio is gasﬂy achieved. Indeed,q dynamical, and organize themselves into various struc-
) . YHires, depending on interaction strengths, temperature and
systems. A variety of .SUCh pnconveqtlonal, uItrasqft SOIIdSdriving force, and it is in this spirit that our model is formu-
hav_e been studied, |_ncluc_i|ng packings of multllamellarlated_ The case where both layers are comparably deform-
vesicles[5], vortex lattices in type?ll supercond_ucto[r@], . able, in particular, is clearly of relevance to sheared crystals.
a_md crystallln_e arrays, elelctrostatlcally or ster_lcally Stab"ln all cases, each layer confronts a periodic potential pro-
lized, of colloidal particles in agueous suspensipfis Ex- duced by the other layer, but both amplitude and phase of

Eﬁgrenre:rgza?narseuZ?er;sr,'g:flaffin':]etreer;c:g]%scgg?édaf:)rp?ggCrlii his periodic potential are dynamical and change as a result
P ' of interactions, noise, and driving force, giving rise to some

range of interesting phenomena they reveal, including th : .
shear-induced distortion of the static structure factor in thé?emarkable collective effects, reported briefly earjiee]

) . . . . and discussed in detail in this paper.
fluid state, and stick-slip dynamid8], hysteresiq9], and . o .
shear-induced meltin§l10,11], in the crystalline state. It is Although the primary motivation for this paper was the

likely that the properties of sheared crystals, as observed iRrobIem of sheared colloidal crystals, there are two other
y ne proper . y T . "~ classes of problems to which our study has a natural connec-
macroscopic three-dimensional scattering studies or in tim

or frequency-domain mechanical measurements, are the aeﬁ?n' One is the phenomenon of lane formation in counter-
era eqresulil of many intermittent, spatiall inhor’no eneouéﬁriven interacting particlef20), the other is the equilibrium
g y » SP y 9 modulated-liquid to solid transition of interacting particles in

internal events. Accordingly, .th's paper focuse§ on sucbcm external periodic potential. We will touch upon the rela-
events, at the level of the relative motion of an adjacent PaIL " of these problems to our work later in this paper

of layers, since we believe that knowledge of these events
will greatly aid our understanding of the mechanisms under-
lying phenomena such as shear melting. We emphasize at the
outset, to avert any confusion on this score, that the phenom- We report two detailed studies in this paper: first, a
ena which our study uncovers, and which we discuss in deBrownian dynamics simulations of a many-particle model
[19], henceforth referred to as the particle model, and sec-
ond, a reduced model, introduced to get insight into the re-

B. Summary of models and results

*Email address: moumita@physics.iisc.ernet.in sults of the particle model, consisting of just two degrees of
"Email address: garani@mrc.iisc.ernet.in freedom[21], an order parameter amplitude, and a strain
*Email address: sriram@physics.iisc.ernet.in field. The particle model consists of two species of particles,
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FIG. 1. Schematic diagram of the model FIG. 3. The structure factor heigtaveraged over the first ring

of maxima as a function of time in the melt-freeze cycle state for
A and B, driven by a forceF, of constant magnitude, in €=0-05 andF§=0.8167.
opposite directions, say, alongtx and —Xx, respectively ) i
(Fig. 1). TheV, andVgg interactions are identical. The,g W€ introduce the reduced model. Using the reduced model,

interaction has the same form but is smaller by a fagtor W€ Study the time evolution of the system using coupled

This factor, in a phenomenological way, incorporates thd!me-dependent Ginzburg-Landau equations for the order pa-
rameter and strain fields, as a function of a coupling param-
._etera entering the model equations and a drf¥eanalogous

. % € andF respectively. For a certain range of valuesaof
parameter so chosen that, whEr-0, each species in the keepinge fixed, as a function of the drive paramefer we

absence of the other settles down in a macroscopically of5p o /e three regimé&igs. 11 and 12—a crystalline state

dered tr.iangular lattice configuration. The dyn_amics qf the(nonzero order parameter vajua bistable regime where the
system is modeled by the overdamped Langevin equation fafysiem alternates between the crystalline and liquid étate
relatively sheared sets of particles and is monitored for difyg, parameter values being zgrtollowed again by a crys-
ferentF ande. With the interlayer coupling strengthheld  t5|line state. Keeping fixed at an optimum value, we find
constant, on increasing the drive, we observe an interestingat the ratio of the average lifetime of the crystalline state to
sequence of nonequilibrium states, namely, a sliding crystakhat of the liquid state in the intermediate regime of bistabil-
line ordered statéFig. 2), a sliding melt-freeze stat@har- ity decreases aa is increasedFigs. 13 and 14 These ob-
acterized by alternate states of order and disorder in)fimeservations are remarkably similar to the phenomenon ob-
followed again by a sliding ordered state. In the intermediateserved in the particle model and indeed the phase diagrams
“melt-freeze” regime, for fixed drive, the residence time of of the two modelgFigs. 10 and 1)¥correspond surprisingly
the system in the ordered state decreases and that of theell. Further, the reduced model exhibits a maximum in the
disordered state increases as a function (figs. 3—5. The  signal-to-noise ratio at optimum values of the noise intensity
allowed nonequilibrium states are best understood in term&ig. 16), thereby making the connection to stochastic reso-
of a dynamic phase diagram of these states. We present suBANnCce concretg22—-25. _

a dynamical nonequilibrium phase diagréRig. 10 demar- The paper is organized as follows. The Browr_nan dynam—
cating the three regime@) lower smooth sliding(ii) alter- €S simulations of the_ particle _model are described |n.S(_ac.
nating melt-freeze state, ariii ) upper smooth sliding state. IIA and the results discussed in detail in Sec. IIB. This is

The melt-freeze alternations are most pronounced in a winfo!lowed by physical arguments in support of the behaviors

dow of diving forceF and iteriyer couping: values, _CHSSTVEd, The educed mod@l] s nvoduced 1 Sec (1A
These melt-freeze cycles are strongly reminiscent of the tim&n< ! ) ) ' : Y, '

series of a system undergoing stochastic resonf2@e29 provide a discussion of our results, suggest how our obser-
and, to explore this aspect in more detail following Rét],
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FIG. 4. The structure factor heigfaveraged over the first ring
FIG. 2. Simulation images of macroscopically ordered latticesof maxima as a function of time in the melt-freeze cycle state for
drifting through each other fog=0.05 andF} =0.0438. €=0.02 andF} =0.8167.
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" are the interparticle forces amri') are Gaussian white noise
15 sources with zero mean obeying the fluctuation dissipation

relation which in nondimensional form reads

5 | ' (hL(0)h}(1))=215,,87 5(1), (4)
0 0.5 1t 15x10°

FIG. 5. The structure factor heighaveraged over first ring of wherel is the unit tensor. It is trivial to generalize to the case
maxima as a function of time in the melt-freeze cycle state dor Where specied andB differ but we have chosen them to be
=0.06 andF* = 1.4350. same in this model. We study the time evolution of this sys-
tem as a function of the drive keepirgconstant for several

vations may be verified experimentally, and outline direc-values ofe. The dmggsmnless time step used in our simu-
tions of future research. lations is 6t=6.4x10"".

II. BROWNIAN DYNAMICS SIMULATIONS OF TWO B. Simulation results

ADJACENT MONOLAYERS The results reported in our study are generally for
A. Particle model 10°—10’ time steps after the initial transients 10* steps are
discarded. Over this time, theandB lattices sweep through
each other a few to several hundred times depending upon
the magnitude of the drive. In order to drift under the action
of the driving forceF, the particles have to overcome a bar-
fier of the order ofVg(€) arising from interaction with the

We consider two seté and B of Brownian particles in
two spatial dimensions, driven in thex and —x directions
respectively by a constant driving force with magnitieas
shown in Fig. 1. Pairwise interactions between particles ar

described by potential¥aa(r), V_BB(r)'_ and Vag(r). We nearest neighbors of the opposite species. Thus, althBugh
choose a rectangular box of dimensiobs:(v3/2)X20¢ i< jiself dimensionless, it is appropriate to state the results in

_ _ Y, :
and W=20¢, _where_€—(2\/§n_o) Y2, ng being the mean erms of the physically relevant dimensionless combination
number density of either species. All quantities we use are I =F¢/V,g(¢). However, for the phase diagram in the

nondimensional form. Lengths are nondimensionalized by  4.iables. we have used the dimensionless combindifpn

. — 2 . . . . . 1
and time byr=¢</D, D being the Brownian diffusivity. En- —FlelV,5(€), asV,g already incorporates a factor efin
ergy is scaled bkgT and force bykgT/¢, whereT is the i gefinition. The structure and dynamics of the system has

temperature anls the Bolizmann constant. If the two Close peen monitored through snapshots of configurations, drift ve-
packed planes, with speciésandB in distinct planes, are |qgjties 4, particle-averaged local velocity variances

slid past each other, it is highly plausible th will be ((5v)2>, pair correlation functiong,,,(r) as functions of

weaker tharV/,, andVpgg (since the effect of thénterlayer — gonarationr, and time-dependeribut equal time structure

interaction on the two-dimensional in-plane motion of thefactorss (k,t) as functions of wave vectdk (x and »

particles, which is wha¥ ,g encodes, is substantially smaller range ovMeVrA ’ B). Each point in theg,,(r) (r=x,y) is an
) . nv L]

than that due to thentralayer interaction and that the 5y arage over 100 data points, recorded at times separated by
strength ofV,g relative toVa, andVeg can be varied by 506t. In the absence of the driving forcee., atF4=0), the

increasing or decreasing the normal confining pressure. Weygiem is an imperfectly ordered crystal. The application of a
therefore choose for this work dimensionless pair potentlalgma” nonzeroF 4, well below the apparent threshold for

of the screened Coulomb form, perceptible macroscopic relative motion of the two lattices
Vaa(F)=Vaa(f) =€ Van(r)=(Ug/r)exp — r), (1 (ong_nd B_partlcles, respect|\_/_e)yfaC|I|tates partlcles that

An(r)=Ves(r) as()=(Uo/M)exp ) @ are initially in unfavorable positions to reorganize and move

to favorable locations leading to a small movement in these

—0.5) are so chosen that each species in the absence of t egions. After these transient motions the system settles

other and any external driving force settles down in a trian—cgvmvno':é?]t: ;?123\:%%01%?8”& ?(;ﬂetfgn Sgug:u:am:‘ g%‘gr
gular lattice configuration(Fig. 1). The particle positions P 9p 9 9 y

. . sustained over distances of the order of the system size.
:ir:)enr; evolve according to the overdamped Langevin equaThere is no further relative drift oA andB except perhaps a

tiny activated creep which we cannot resolve. Thereafter,

keeping interaction strengths and temperature fixed, the driv-
ing forceF displays three threshold valués, i=1,2,3 cor-

i ] . ) ] responding to the lower bounds of three states—a lower slid-
whereR,, = (Xi,,¥i,) is the coordinate of theth particle of  jng crystalline state, a melt-freeze state, and an upper sliding
the speciew (=A or B), and=Fx (+ for A, — for B) is  crystalline state. The characteristic features of each of these
the external driving force on thieh particle of typepu. three states are mentioned below.

where U, (=1.75<10% and the screening parametet{(

R, (t+8) =R, () + at[F, +,(R,(1)+h ()], (2
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FIG. 6. Particle configuration snapshots at the onset of disorder

in the melting-freezing regime for=0.05 andF} =0.8167. ) )
ordered and a disordered state which are the melt-freeze

, cycles(Figs. 4, 3, and b We have used snapshots of con-
WhenF, crosses the first threshokd, theAandB com- g0, ations shown in Figs. 6 and 7, the pair correlation func-

ponents acquire a measurable, macroscopic relative drift V&ion g..(r), r=x,y (Figs. 8 and § and the equal-time but
mv H H .

I?]cnyth d Thle d”f.tr\]/ erl]ocnylsh_owfsl a smpoth Chﬁ”g? at th'Stime—dependent structure fact8(k,t) to characterize these
threshold value with the velocity fluctuatiof6] showing a 4 namical states of order and disorder. As the first two meth-

pSronOIL:J_ncedg enginc?rgefﬁg] gll_ﬂk?ra_cttla_ﬂs:lctofbdeplr;nmg. ods are representative of the instantaneous state of the sys-
(See Figs. 3 and 4 of Reff19].) IS IS likely lo be a strong -~ 4o, ~ for monitoring these cycles continuously we use the
crossover rather than a true transition. Each particle faces ﬁeak height of théshort-time averagedstatic structure fac-
finite barrier to motion, so that at any nonzero temperature, S(k,t). Indeed, the essential features of these cycles,

particles can cross the barrier individually in an InCOherentnamely the persistence duration, fluctuations in the extent of

manner for arbitrarily smalF;. The barrier for creep veloc- . yar ‘etc are best captured through the time dependence of
ity should thus be finite even in the limit of infinite system S(k t)' as ;Ne shall see. A typical such plot is shown in Fig. 3
size. In the regiofr;<F<F,, bothA andB components are for ,an optimum value ofe=0.05. It is clear thatS(k,t)

well-ordered, drifting crystal¢Fig. 2). The two components alternates between long stretches of crystal{t@respond-

slide smoothly past each other in lanes of width equal to th
interparticle distance, with negligible distortion or disorder.?(:cg“;ou:glrﬁz \\//?;Ilszss[osan;ﬁ)\]/aallged; c())rg()srs?lggnt%es t;?rtr?l:}?:

We comment later on the connection to the lane formation. L L : . .
work of Ref.[20]. Nion progresses. This is strikingly different from stick-slip

alternations, in which the melte@lip) state is considerably
shorter than the crystallinestick) state[12,13. We discuss

this comparison later in Sec. IV. For smaller valueseof
even as the persistence of the crystalline state is enhanced,
the extent of ordering itself is less pronounced as indicated
by the lower values o8 (compared to that for the crystalline
phase corresponding to=0.05). Concomitantly, the liquid-

like state also displays significant short-range order. These

S1/WM«M 25
o © ﬂ

In a window of driving forcesF,<F<F3, we observe
intriguing stochastic alternations of the system between al

0 5 10 0 5 10
(a) y (b) y
s, A r =5
1 o
9000000 A ﬂ
At 9.95x10° timesteps At 1.01x10° timesteps 0.7 0
0 5 10 0 5 10
(c) y (d) y
FIG. 7. Voronoi construction from particle configurations show-
ing the onset of order and of disorder for specdieat e=0.05 and FIG. 9. The distribution function alongdirection for species\
41=0.8167. for e=0.05 andFj =0.8167.
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features are clear from Fig. 4 whegk,t) is shown fore
=0.02. For higher values of, the liquidlike state is more 10}
favored(as can be seen from the short stretches of crystalline
orden for e=0.06 shown in Fig. 5. °
As is clear from Figs. 3—-5, the time scales over which the * o M
crystalline order or liquidlike disorder sets in is considerably
shorter than the persistence time of each of these phases. The °
. . . . . 0.9r
process of ordering and disordering is better monitored o6 o ©o© © I
through a sequence of snapshots of configurations. A typical °© o o
set of snapshots is shown in Fig. 6. The corresponding
Voronoi construction fore=0.05 is shown in Fig. 7(See | °
also Fig. 5 in Ref[19].) The extent of order in th& andy
directions is studied using the correlation function. The na- 00%05 0.02
ture of g(x) and g(y) is shown in Figs. 8 and 9 at four
different times. Note that the extent of order in the liquidlike  FiG. 10. The phase diagram of the syst80 particles of each
state in the direction of the driveis significantly less than  speciegin the e-F plane, whereF% = F ¢ e/Vg. The system un-
that in they direction. Further, the primary ordering wave dergoes the stochastic melt-freeze alternations in the region I, and
vectors are alond( and 60° tox. Thus nearest neighbor is a macroscopically ordered crystal in the upper and lower regions
distance in they direction is /3 times larger. A partial un- ! and Ill, respectively.
derstanding of why order starts to set in again after melting
has occurred is to note that relative motion disrupts primarilyan

those_ stru ctures_ with ordermg wave vector along the. drlft'stability associated with the cycles: for the parameters men-
directionx, leaving some residual order aloygas seen in  tioned above, a disordered configuration fails to nucleate
Figs. 8 and 9. So each species still provides a weak periodigyen over our longest simulations if the initial state is chosen
potential alongy for the other species. This can induce orderto he aperfectly ordered latticeThus, both the melt-freeze
alongx as well resulting in a two-dimensioné2D) ordered  cycles and ordered sliding states display local dynamical sta-
state by a mechanism similar to the “laser-induced freezing'yjjity. But if we disturb this initial perfectly ordered lattice
of a 2D suspension_ of_strongly in_teracting coI_IoidaI particlesby moving a single particle by, say, one lattice spacing, the
subject to a 1D periodic modulatid@7—30. This state per-  melt-freeze cycles resume. Also note that the orientation of
sists for a long time, before disorder once again sets in. Anghe triangular lattice in the ordered state of the cyglgis.
it is in this driving force regime that one sees the melting-(3)] is changed by 30° with respect to the one in the steady
freezing cycles. Finally, we find that the two species do nokjiging state(Fig. 2). This exchange of stabilities between the
necessarily order or_diso_rder simultaneously. Though Wecc-like (Fig. 2) and “layer” [Fig. 6(a)] structures is known
found no clear trend in this regard, mostly, one species berom experiment§31] and simulation§32]. At low relative
gins to order while the other is disordered. Also, for bothye|ocity, particles in each layer have ample time to get out of
species, the “Bragg peak heights” rise fast and declinethe way of those in the other layer while retaining on average
slowly, i.e., ordering takes place much faster than the prothe fcc-like structure. As the speed is increased, the struc-
gression of disorder. _ _ tures do not have sufficient time to relax and overlap is re-
The structure factor can be used to obtain the dynamicaced by going to the layer structure of Figap However,
phase diagram in thE{ - plane. This is shown in Fig. 10. e observe that even with such a shift in orientation, in the
The points shown here actually represent the value ofrdered part of the cycle, the smooth relative motion ofahe
(F3 ,€) for which the crystalline phase is detected just be-and B lattices is disturbed now and then by kinks; a row
fore entering the bistable melt-freeze regioegion I). The  moving out of step with adjacent rows, as marked in Fig. 6.
regions | and Il refer, respectively, to the lower and upperThis leads to the formation of kinklike undulations trans-
sliding crystalline states. We emphasize here that the transirerse to the mean drift like a wave. At some point in time as
tion to the melt-freeze regime occurs over a finite range othese undulations build up sufficiently, the system enters a
values of the parameters and it is not possible to pin downlisordered state. This state persists for a long time, before
with precision the point at which the melt-freeze alternationsorder sets in once again. Recall that at smaalh the ordered
begin. The range of values of the forég,— F,, over which  part of the cycle, the magnitude of the structure factor is
we observe that the melt-freeze cycles increase wiind  small and correspondingly we find an enhanced level of fluc-
hence withV g as well(Fig. 10. This agrees well with our tuations(Fig. 4 compared to that at large (Fig. 3). This is
observation that the average potential barrier that a particleecause the ordered states at sneatfan support a larger
has to negotiate during its motion in the steady sliding stateiumber of defects without making a transition to the disor-
increases withe. Further, for large values of (e=0.05), dered state, whereas ads increased such states cannot be
the alternations persist over a very large window of drivingsustained for long time. In fact, with increasiegthe prob-
forces. For sucle values, we have not been able to detect theability of the system being in the ordered state crucially de-
upper thresholdF 3 corresponding to the reentrant crystalline pends on the defect density, i.e., the ordered state is long
state. lived only when the number of defects is small. This can be

¢ 0035 0.05

We shall now discuss the melt-freeze cycles in more detail
d explain the observed features. There is a curious meta-
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understood by considering the potential landscape seen lut the undulating landscape. For bath/7,>1 and <1,
each species. In the ordered state, particles of each speciee expect and find smooth, orderly sliding. We therefore
are nested in the threefold minima formed by its nearesexpect maximal effects of interspecies interaction whare
neighbors of the other species. For snealboth in the lower ~7, (for example, for e=0.05, 7,=0.00022 and 7,

and upper part of the sliding states, the potential depth is=0.000 19 in the melt-freeze regii&9]), which is what we
shallow and creation of defects in shallow potentials does nofind. This suggests that a detailed explanation lies in mecha-
cost much energy. For the same reason, the number of sugfisms involving competing time scales to which we now
defects that the state can sustain can also be large, which i

turn implies that the extent of order in the crystalline part of the stochastic alternations of the system between the

the cycles is not significant. A shallow potential also allows .y sta|line and liquidiike states is strongly reminiscent of the
for the ease of annealing of the defects as this can be accorﬁhenomenon of stochastic resonars® [22—25. To see

pl'fhgd by (;3movmg Onaerti?:?ertlgeafzci)vn; ?Olze‘égg;g::?aéodorsdighe similarities and the differences, consider a prototypical
?Iili © Dotl'?uslr;gwonsitﬁation allows for the ease of creation example of stochastic resonance of a Brownian particle in a
9. 0. ’ € bistable potential subjected to a weak periodic forcing term.

and annealmg out of these defects as time progresses. T%hen half the periodicity of the driving force is comparable
dynamical balance between the creations and annihilation qE the mean first passage time associated with the barrier

the defects can be sustained for long stretches of time blé ossing, the state of the system switches between the two

){’V't? smal_lrehr_ e?(tent O.f olrderhw'lth concomltsntl({ql)a;;gfhggc- minima of the potential in a surprisingly regular way. Indeed,
uations. This IS precisely what 1S seen In g tpe time series of the position of the Brownian particle en-
this picture is also consistent with the observed feature th%rained in the two minima is very similar t8(k,t) of the
the liquidiike state at I.OWE has a fairly high !evel of o_rder particle model. What this potenti&r an “eﬁecti\;e free en-
compared to that at highk.) In contrast, with increase i, ergy” in this case is and what modulations are, is not clear

the Wel.l depth increases S|gn|f|cantly which |mpI|es_, thqt thein the present model and needs further investigation. One can
crystalline order would be high as can be seen in Fig. 3

M the f i f defects is | p d but on anticipate that the role of the bistable potential in SR is
f oreo(;/e_rt, N ortmg lon O'I elects IIS des: a;\r:ore ' l;] do fg tIayed by the effective free energy as the system is a many-
ormed, 1t cannot be easlly annealed. Further, each detee, 1o system switching between the crystalline and liquid-
gives rise to large local restoring forces and the crystallin

d il be terminated hen their number is small ike states. However, identifying a periodic forcing in the
order wifl be terminated even w Irnu : . present context is more difficult. Thus, it would be useful to
For F>F3, both A and B components are once again

lI-ordered. drifti tals. In fact. th f construct a reduced model which displays the dominant fea-
well-ordered, driiting crystals. In 1act, th€ reappearance ol g, .oq of the particle model. One important characteristic fea-
smooth sliding state is akin to the reentrant ordered statg, . ¢ SR is that the signal-to-naise ratio exhibits a maxi-
seen in Refs[21,33. gum at an optimum value of the noise intensity. This aspect

| In f?jch' tueds_lldmg cry;tal!me I_statjes thag wedobts?rve "."t annot be easily checked in the particle model as it involves
ow and figh drives can be visualized as ordered states wi enerating very long time seriéwhich would involve pro-

lanes|20] of ;in_gle-particle W.idth' Referend0] studies a hibitively large scale computing However, we recall that
mo_del very s_|m|Iar to ours, wite=1. In thgt case, the equi- alteringe in the particle model has an effect that controls the
librium statg is a crystal, randomly occumed by each SPECIS41i of the residence times of the system in the ordered and
and the driven state shows the interesting phenomenon isordered states. This is similar to altering the height of the

Iane formation. Becagse|s large, the system tries to mini- bistable potential which in turn controls the residence time in
mize the_ extent oAB interface, he_nce one gets a few brof?‘dthe example considered. This identification further supports
Iapes W'th many columns of particles of the Same SPECIeYy ¢ view that the melt-freeze cycles are, in fact, stochastic
Sincee is very small for us, we get many lanes of unit width. \oqnance. We shall make this more concrete by introducing

. The results state_:d above are for 1(,30 particles O,f each SP& reduced model which captures most features of the particle
cies. We have carried out a systematic study of this pheno”}hodel.

ena for 144, 169, and 256 particles of each type éor
=0.02. We find the same qualitative behavior as that for 100
particles including the range df, values for the three
phases. However, for smaller systefmgth 64 particles of The effects of external nonequilibrium driving conditions
each specigswe have not observed any significant decay inin an underlying first-order phase transition have often been
order fore<<0.1 (possibly due to the fact that the correlation studied successfully by modifying, say, the time-dependent
length is of the order of half the system size in this ¢gase Ginzburg-LandalTDGL) equation for the dynamics of the
We now discuss some natural timescales which will beorder parametef34]. The results of the preceding section
useful in our final explanation of this phenomenon. When thevere obtained from direct simulation of particle motion. In
two arrays of particles are driven through each other, there ithis section, we propose an understanding of these results
a competition between two time scalesr- the time to  through dynamical equations for the appropriate order pa-
traverse one lattice spacing amg, the time scale of relax- rameter fields evolving under the combined effect of shear
ation of a particle in the local potential well provided by its and a coarse-grained free energy. The nature of the free en-
neighbors. Forr;> 15, each species has ample time to relaxergy functional is usually determined based on the knowl-
to local equilibrium, while forr;<7,, each species averages edge of the allowed states of order/disorder and a few

Ill. THE REDUCED MODEL
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general symmetry considerations. Here, we follow the modeWill get stuck at a finite value in the absence of n0I§§.1’s
proposed earlief21] for studying sheared colloidal crystals (q=p,#) are the kinetic coefficientsy,'s represent Gauss-
[33,35. Recall that in our simulations, at low drives, we find jan §-correlated noise components whose variances are re-
a smooth sliding crystal wherein tielattice slides past that |ated to I'; and temperature through the fluctuation-
of B in a coherent fashion, and at intermediate drive valuesgdissipation relation. We ignore possible additional
we observe the melt-freeze cycles. To mimic this, we choos@onequilibrium noise sources.

an order parameter denoted py(the Bragg peak intensity The equations for our system are those for an overdamped
which takes on a finite value corresponding to the crystallingarticle in a nonsymmetric double-well potenti&lp, 6),
order and zero value corresponding to the liquidlike order. Adriven along the angular coordingt®6]. For zero strain
simple form of the free energy which ensures the crystalline=0), the system relaxes in either of the two minima corre-
(p#0) and melt phase0) is the Landau polynomial for - sponding to the liquid minimum,

a first-order transition,

=0, 6=0, (10)
ap® bip® cyp? |
V(p)=2—3+4- (5) ) .
or the crystalline minimum
The distortions produced due to the drive in the particle
model can be represented by another variable representing :E 14 _ 4a,C, 0=0 (11)
the strain(in our model, the relative phase of the density Pe 2cy b12 ’ '

wave in the two sliding layejsdenoted byd. In the crystal-
line state, as distortions are small and homogeneous at |0Wepending on which is the locally stable state.
drives, we taked to be zero for this state. As homogeneous \\e choose the parameter values, (b, andc,) such

distortions would mean that the successive minima of thgna; the crystalline minimum, is the more favorable state at
crystal are equivalent, we consideto be a periodic variable  ;¢rq drive and the potential barrier between the two minima,

with 0=p to be equivale_nt to9=1.. Further recall that.our V(p)—V(p.), is appropriate. In the presence of noise
simulations show that at intermediate drives, deformation bexyhose strength can be appropriately chostite system

comes inhomogeneous, forcing the crystalline state to meltqjjlibrates with the respective populations determined by
(although in a dynamical wayAgain, a simple form of the  gise strength and the relative well depthsgland p are
free energy ing should incorporate elasticity at smalland  macroscopidinfinite system-sizeaverages, there should be
yielding at larged, ie., at small strainsy(6) is assumed to o pojse in the equations. In practice, presumably, shear
be quadratic inf and a softening term at larger straiffie  nejting and the cycles take place over a finite correlated
cubic term. The coefficient oV () must vanish withp, say domain(whose size we do not knowWe are therefore jus-
asp?, as the free energy cost of deformations must reduce tffied in using noisy evolution equations.

zero when the system is in the liquid stdte., for p=0). When the driveQ) is switched on, this scenario is altered
The simplest general form of the free enefgp.0) of a  and the populations of each of these wells now evolve in
dIStOI‘ted SO“d reSpeCtIng the abOVe Cond|t|@2$] IS Of the t|me depending upon the Competing t|me Scales Of re'axation

following form: and applied shear rate. In this case, it is better to consider the
1 fixed points of the noise-free case of E¢8) and (9). The
F(p,0)=V(p)+ = ap®V(0), (6)  two attractive fixed points to which the system relaxes can
2 now be identified with crystalline and liquidlike order. The

repulsive fixed point determines a saddle type of maximum.
These will depend on the shear rdde The barrier height
between the stable fixed points and unstable fixed point de-
) (7)  termine the barriers that the system has to surmount. These
2 3 4 now depend orf). We find that the value of the free energy
at the liquidlike minima and the saddle do not change sig-
nificantly, only the crystallinddistorted minimum changes
as a function of) given by

whereV(6) has a similar form a¥(p),

a,0® b,6® c,6*
V(0)=2 _2 2

The Langevin-TDGL equations fgr and 6 that describe the
dynamics of this system are

1 (?F(;o,H)Jr ®
P=—F T TNy, b 4la;+aV(byin]c
T LIS \/1— (23t Vidmnles|
2c, b,
6= ! aF(p'0)+Q+ (9)
T, a6 o Note that Eq.(9) determines a critical value of)=(,

=0.5ap?(VI36) | max. For values of2<Q., the barrier is
The idea is that in the absence of any restoring forcegfor high. In such a situation, in the presence of noise, the tran-
6 would be equal td). In general, then() represents the sitions would be rare. But, on increasifigbeyond the criti-
effects of relative sliding of the layers, at a rate determinectal value the “free energy” of crystalline state becomes com-
by competition betweef) anddF/d6. If Q) is too small,6  parable with that of the liquid minimum. Under these
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Q=0.03
0.5
?0 (@) 2 4 x10°
Q=0.08
a 05
0 (b) 2 4 x 10°
Q=0.3
0.5
0 5
0 (©) 2 i 4 x10

FIG. 11. The time series of the order parameter in the (tmp
pane), high (bottom panel and intermediatémiddle panel driv-
ing force regimes. We have chosen a noise strefyt7 x 10~ 4
and coupling parameter=0.17.
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0.1 Q=0.03
00 (a) 0.5 1
0.1 Q=0.08
c
c
00 (b) 0.5 1
0.1 Q=0.3
0
0(c) 0.5 p 1

FIG. 12. The marginal probability distribution of the order pa-
rameter in the low(top pane), high (bottom panel and intermedi-
ate (middle panel driving force regimes for the same parameter
values as in Fig. 11.

conditions, noise assisted transitions to the liquid state occur.

More importantly, in this regime, a8 is itself changing as a
function of time, the minima ing, #) are slowly modulated

under action of the driv€) and the relative stability changes
as a function of time. When the time scale imposedbys

parameter values in the free energy used are 0.85, b,
=5.8, ¢;=8.0, and for the strain field ara,=1.3644,b,
=8.7105, anct,=13.6740. We study the time evolution of
the system as a function of the drigk (for a fixed coupling

small enough to allow the system to make interwell transi-Parametera) and as a function ofr for a fixed drive. We
tions and when the time scale of the induced periodicity isoPserve the following behavior.

approximately equal to the Kramers escape tj8i&38 un-

der the influence of noise, one expects transitions between

the crystalline and liquidlike states in a range of value§)of

1. As a function of the driveQ)
Keeping « fixed at an optimum valuea=0.17), the

beyond().. As a result, the system can undergo stochasti@rive has two thresholds:
transitions between the two metastable states which in turn (i) For Q<Q, and Q>Q,, we find that the system al-

can lead to comparable lifetimes.

ways resides in the crystalline minimurp£0). The time

As this is a driven system, a reasonable criterion forseries ofp(t) is shown in Figs. 1a,0 for a typical set of
studying the occupancy of the system is to calculate the makalues()=0.03 and(2=0.3, respectively. The correspond-

ginal probability distribution functionP(p)=[P(p,0)dd

ing probability distribution is peaked around the crystalline

(i.e., the probability of the order parameter having the valugminimum, as can be seen from Figs(42).

p, independent of the value of the strain fief)l. In the

(i) In an intermediate window of driving forceQ;<<()

following section we show that the external drive causes the<(),, the system stochastically alternates between the liquid
system to sample both minima or stay mainly in one of the(p=0) and the crystalline minimum. The time series corre-

minima depending on the value of the drie, noise
strength, and coupling constamat starting from an initial
crystalline state.

Results of the reduced model

We study the time series and the probability distribution
of the system by discretizing the Langevin equations in time

The integration scheme used is the fourth-order Runge-Kutt
with a fixed time step of 0.001. After discarding transients

(~10° time step} the time evolution of the system for the
next 8x 10° time steps is monitored. In Figs. 11 and 13 we
have shown a time series stretch fronx 0° to 6.5x 10°
time steps. Noise corresponding gcand # are drawn from

sponding to a typical value ofl=0.08 is shown in Fig.
11(b). The probability distribution has two peaks correspond-
ing to these two minima. The time series of the order param-
eter[Fig. 11(b)] also shows that the persistence time of these
two states are comparab(for optimum values ofa) very
much like the time series of a system undergoing stochastic
resonance. These results are similar to the results of the par-

Hcle model where=} was varied for a fixed value of.

2. As a function of the couplinga

Here, we have kept the driv@ at intermediate values.
We find that the crystalline minimum is favored over the
liquid one for low values ofx, whereas for high values the

Gaussian white noise distributions with zero mean and uniliquid minimum dominates. At intermediate valuesaafthe
variance. For studying the time evolution of the system, wesystem spends comparable durations in each state. As we

have chosen a noise strendgbh=7x10 4 for both n, and

increasex from small values, one finds that the system tends

74 (We shall study the influence of noise on the signal-to-to spend increasingly more time in the liquid state and, even-

noise ratio latey. For the numerical work reported here, the

tually, at large values ok the liquid state is the preferred

061402-8



COLLECTIVE STOCHASTIC RESONANCE IN SHEAR ..
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FIG. 13. The time series of the order parameter in the (mp
pane), high (bottom panel and intermediatémiddle panel values
of the coupling parametes for noise strengttD=7x10"* and
driving force 2=0.08.

state. This is shown in Fig. 13 for three typical valuesyof
(The numerical results are fd2=0.08, for which we ob-
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107 1

-2

107 o 10

FIG. 15. The power spectrum of the time series of the order
parametep for «=0.17,02=0.08, andD =7.0x 10 *.

X10 % to 1.2x 10 3. It exhibits strong peaks at all integral
values of the fundamentélinlike the symmetric bistable po-
tential where only the odd harmonics are gedue to the
absence of any symmetry i(p, #). A plot of this is shown

in Fig. 15 for a typical value oD=7.0x 10" 4. The signal-
to-noise ratio calculated from the power spectrum using the

serve the most prominent stochastic switching of the ordefirst peak for various values @ is shown in Fig. 16(Here

parameter values betweer*0 andp=0.) This is also re-

we have used the conventional definition of SNR, namely,

flected in the probability distribution which has a more pro-1010d Siigna(®@)/Sioisd®@)].) As is clear from the figure, the

nounced peak at the crystalline minimum at smalhnd at
the liquid minimum at largex. For intermediate values af

we find a bimodal distribution. Figure 14 shows the probabil-

maximum enhancement of the SNR is found to be around
D~7.0x10 “.
As discussed above, we note tlfatand o of the reduced

ity distributions for the parameter values of Fig. 13. Thismodel take the roles of the drive; and the interspecies
behavior is similar to the results obtained in the particleinteraction strengtle in the particle model, respectively. To

model by varyinge keepingF} fixed.

make the parallel between these models more concrete, we

As mentioned, one dominant feature of SR is the enhancdiave constructed the dynamical phase diagram incat{e
ment of the signal-to-noise rati®NR) at an optimum value plane shown in Fig. 17(In constructing this diagram, we
of the noise intensity. In order to check this, we have carriechave taken the system to be a liquid state if it spends less
out long runs of the order of 1®time steps. The power than 2% of the time in the crystalline minimum, and corre-
spectral densityPSD) of the time series has been calculatedspondingly for the crystal.Region | refers to the crystalline

for various values of the noise intensity ranging fr@ns 6

0.1
o=0.15
. ?o (a) 0.5 1
. 0=0.16
c
c
% (b) 0.5 1
0.1 «=0.18
0
0 (c) 05 0 1

FIG. 14. The marginal probability distribution of the order pa-

rameter in the low(top panel, high (bottom panél and intermedi-

phase and region lll, the reentrant crystalline phase. The
melt-freeze cycles where the system alternates between crys-
tal and liquid is shown as region Il. In region Il, for low
values of the coupling parametet, the persistence of the
ordered state is more than that for the disordered state, and

20

15;

o 10 12x1074

FIG. 16. The signal-to-noise ratio for the reduced model for

ate (middle panel «, for the same parameter values as in Fig. 13. parameter valuea=0.17 and()=0.08.
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FIG. 17. The phase diagram of the reduced model indHe )
plane. The system is crystalline in region | and region Ill represents FIG. 18. AF. andAF, as a function of}.
the reentrant solid. In region Il we observe the melt-freeze cycles.
For high values, liquidlike region IV is seen again. here that the first passage time for the system to cross the
barrier, from the liquid state is much too large as the barrier
decreases ag is increased, eventually giving way to the AF,~0.01. Thus, it is clear that the reduced model repro-
liquidlike region 1V for moderate values @é1. It is clear that duces, qualitatively, most features of the particle model. The
this diagram is remarkably similar to the phase diagram ofime series ofS(k,t) in the particle model is very similar to
the particle model shown in Fig. 10, except for the region IVthat of p(t) which we have demonstrated to have all the
which could not be detected in the particle model within thefeatures of stochastic resonance. The regime showing sto-
longest runs carried out. chastic resonance is more pronounced for optimum values of
The physical picture of the reduced model is clear. As the) and «. In fact here, as in our particle model simulations,
initial state at zero shear rate is a crystalline state, by contiin the melt-freeze regime, for low values of the coupling
nuity arguments one should expect that at low shear rates thgarameter, the crystalline state is favored and for high values
system should find the crystalline minimum favorable. Atof the coupling parameter, the liquid state is favored, while
intermediate range of shear rates, the system develops aiman intermediate regime they are roughly equal. The simi-
other minimum at zero value of the order parametazor-  larity of the reduced model with the particle model is well
responding to the melt state making the system bistablesummarized by the phase diagram of the model inQhe
When the shear rate is close (@nd larger thanthe critical  plane which is similar to that of the particle model in the
value()., under the action of noise, the systems make tranF}-e plane.
sitions from the crystalline minimum to the liquid minimum
and vice versa. However, since the straievolves in time,
the system experiences an additional periodic modulation.
We note here that this periodicity is not equal t6)1as the In summary, we have studied the nonequilibrium statisti-
strain variable moves on thé(6) surface. Typical values of ¢a| behavior of two adjacent monolayers sheared past each
the induced periodicity estimated from deterministic versiongther, using Brownian dynamics simulations. For low and
of Egs.(8) and(9) for the optimum range of drive values is high driving forces, we obtain macroscopically ordered,
of the order of 18 time units. When the induced periodicity steadily drifting states. In a suitable range of driving rates we
is twice the Kramers escape rd@7], the system alternates see that the system switches between crystalline and liquid-
between the two minima. Further, we note that as the twgjke states. The residence times are nearly equal in an inter-
wells are not symmetric, in the presence of noise, the meagediate range of values of the inter-layer coupling. As we
first passage times associated with the two wells will be difhaye seen, the interlayer coupling essentially determines the
ferent. Indeed, we find that as a function @f there is a parrier each particle has to surmount in order keep pace with
range of() values (0.065:(2<0.12) where the barrier be- the applied drive. Our simulations show that the switching
tween the crystalline minimum and maximum of the freepetween the crystalline and liquidlike states maintains the
energy, Fsaddie™ Ferysta=AF¢, is much smaller than that spatial coherencéor the lack of it in the liquid stateand
between the liquidlike minimum and the maximuRyaqqie  thus is an example afooperative stochastic resonanas-
—Fiiquia=AF; . Aplot of AF; andAF, is shown in Fig. 18.  though there is no external imposed time-periodic potential
It is clear thatAF, is nearly constant as a function 6f  present in our system, its role is played by the drive which
while AF. goes through a minimum in the range &  shears the two layers past each other. Thus, each moving
=0.065-0.12. A simple order of magnitude calculation giveSayer provides a time-varying potential. To make the connec-
the Kramers rate[37] T;'=[(FlinlFraqaid)¥427]exp tion to SR, more concrete, we have introduced a reduced
—[AF/D]~10"° which matches with the frequency range of model for the dynamics of amplitude and phase of the crys-
the first harmonic seen in the PSBee Fig. 15 We note talline order parametd21] which mimics all features of the

IV. DISCUSSION

061402-10



COLLECTIVE STOCHASTIC RESONANCE IN SHEAR .. PHYSICAL REVIEW E 68, 061402 (2003

particle model apart from showing the main feature of SRreduced model. As explained earlier, this feature is a many-
namely, the enhancement of signal-to-noise ratio for optitody effect appearing in a low barrier situation and therefore
mum values of noise strength. This relation between the pakannot be explained on the basis of the SR features of the
ticle model and the reduced model makes a convincing cas@duced model valid only in the Kramers high barrier limit
that the melt-freeze cycles observed in the former are indee@ven if one were to include appropriate spatial degrees of
a manifestation of stochastic resonance of a spatially eXfreedon).
tended[39] noisy interacting system subjected to a constant  Finally, let us comment on the experiments which can
drive. verify our simulations. We expect that this phenomenon
A few comments may be in order on the dynamics of theshould arise in adjacent crystal planes of sheared colloidal
particle model. Although our model falls broadly into the crystals. To study this effect in bulk sheared colloidal crys-
class of shear driven systems which are known to displayals would require not conventional scattering probes but
stick-slip behaviof12,13,4Q in most such cases where the something that focuses on an adjacent pair of crystal planes
system spends considerable time in the stuck phase and veys). Alternately, we could look at two solid surfaces pat-
little time in the Sllp phase. EXperimentS on confined ﬂUidSterned with ordered Copo|ymé42,4?£| or colloidal mono|ay_
of few monolayers(a situation superficially similar to our ers under relative shear. The colloids or copolymer adsorbed
mode) and the corresponding molecular dynamics simulatp the two surfaces must be of two different kinds, each
tions [12,13 show that the system also displays melt-freezenaying more affinity towards one of the surfaces. Another
cycles with the crystalline phase persisting significantlypossibility would be to study electrokinetic motion of
much longer than the melt phase. From this point of view.charged 2D confined binary colloids in the presence of a
the persistence dynamics we observe, with nearly equal resipnstant external electric field, generalizing the ideas of Ref.
dence times in CrySta”ine and the I|qU|d'I|ke states, comes aElzo] Center of mass measurements would be the same as

a Surprise and is Clearly not Conventiona-l StiCk-Slip motion..those made for two Species being driven in Opposite direc-
The reduced model has helped us to elucidate the connectigjyns.

to stochastic resonance apart from the similarity of the phase
diagrams of the two models. However, it is clear that not all
aspects of the particle model are mimicked by the reduced
model. For instance, the feature observed for small interlayer
couplinge, namely the smaller extent of order as seen by the M.D. acknowledges CSIR, India for financial support,
small values ofS(k,t) in the crystalline statécompared to SERC, [ISc for providing computational facilities and C.
larger values of) and larger fluctuations is not seen in the Dasgupta, B. Chakrabarti, and C. Das for useful discussions.
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